Multi-dark soliton solutions for the (2+1)-dimensional multi-component Maccari system
نویسندگان
چکیده
منابع مشابه
Analytical multi-soliton solutions of a (2+1)-dimensional breaking soliton equation
The analytical solutions for a (2+1)-dimensional breaking solution equation is proposed in this paper by using mapping and projective method darboux transformation, and Some exact propagating solutions are constructed for this Breaking equation, and the M × N multi-soliton could be obtained by using Weierstrassp function and setting the perfect parameters. The potential application of breaking ...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملMulti-soliton solutions for the supercritical gKdV equations
For the L subcritical and critical (gKdV) equations, Martel [11] proved the existence and uniqueness of multi-solitons. Recall that for any N given solitons, we call multi-soliton a solution of (gKdV) which behaves as the sum of these N solitons asymptotically as t → +∞. More recently, for the L supercritical case, Côte, Martel and Merle [4] proved the existence of at least one multi-soliton. I...
متن کاملMulti-Soliton Solutions for an Inhomogeneous Nonlinear Schrödinger– Maxwell–Bloch System in the Erbium-Doped Fiber
Under investigation in this paper is an inhomogeneous nonlinear Schrödinger–Maxwell–Bloch system with variable dispersion and nonlinear effects, which describes the propagation of optical pulses in an inhomogeneous erbium-doped fiber. Under certain coefficient constraints, multi-soliton solutions are obtained by the Hirota method and symbolic computation. Evolution and interaction of the solito...
متن کاملMulti-component generalizations of four integrable differential-difference equations: soliton solutions and bilinear Bäcklund transformations
Bilinear approach is applied to derive integrable multi-component generalizations of the socalled 1+1 dimensional special Toda lattice, the Volterra lattice, a simple differential-difference equation found by Adler, Moser, Weiss, Veselov and Shabat and another integrable lattice reduced from the discrete BKP equation. Their soliton solutions expressed by pfaffians and the corresponding bilinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Modern Physics Letters B
سال: 2019
ISSN: 0217-9849,1793-6640
DOI: 10.1142/s0217984919503901